Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice.
نویسندگان
چکیده
Immunostimulatory CpG DNA was self-assembled to form DNA hydrogels for use as a sustained delivery system for both intercalated doxorubicin (DXR) and immunostimulatory CpG motifs for cancer treatment. X-shaped DNA (X-DNA) was designed as a building unit, and underwent ligation to form DNA hydrogels. Two types of X-DNA were constructed using four oligodeoxynucleotides each, one containing six potent CpG motifs (CpG X-DNA) and the other with none (CpG-free X-DNA). CpG X-DNA was more effective than its components or the CpG-free counterpart in terms of the production of tumor necrosis factor-α from murine macrophage-like RAW264.7 cells, as well as maturation of the murine dendritic DC2.4 cells. The cytotoxic effects of X-DNA, DXR and their complexes were examined in a co-culture system of colon26/Luc cells, a murine adenocarcinoma clone stably expressing firefly luciferase, and RAW264.7 cells. DXR/CpG X-DNA showed the highest ability to inhibit the proliferation of colon26/Luc cells. DXR was slowly released from CpG DNA hydrogels. Injections of DXR/CpG DNA hydrogels into a subcutaneous colon26 tumor effectively inhibited tumor growth. These results show that CpG DNA hydrogels are an effective sustained system for delivery of immunostimulatory signals to TLR9-positive immune cells and DXR to cancer cells.
منابع مشابه
Dendritic Cell Maturation with CpG for Tumor Immunotherapy
Background: Bacterial DNA has immunostimulatory effects on different types of immune cells such as dendritic cells (DCs). Application of DCs as a cellular adjuvant represents a promising approach in the immunotherapy of infectious disease and cancers. Objectives: To investigate the effect of tumor antigen pulsed DCs in the presence of CpG-1826 in treatment of a murine model of cancer. Methods: ...
متن کاملExosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA.
For cancer immunotherapy via tumor antigen vaccination in combination with an adjuvant, major challenges include the identification of a particular tumor antigen and efficient delivery of the antigen as well as adjuvant to antigen-presenting cells. In this study, we proposed an efficient exosome-based tumor antigens-adjuvant co-delivery system using genetically engineered tumor cell-derived exo...
متن کاملInjectable, self-gelling, biodegradable, and immunomodulatory DNA hydrogel for antigen delivery.
DNA nanotechnology-based nanosystems and macrosystems have attracted much attention in the biomedical research field. The nature of DNA endows these systems with biodegradable, biocompatible, and immunomodulatory properties. Here, we present an injectable hydrogel system that consists only of chemically synthesized short DNA strands, water, and salts. Several preparations of polypod-like struct...
متن کاملCarbon nanotubes enhance CpG uptake and potentiate antiglioma immunity.
PURPOSE Stimulation of toll-like receptor-9 (TLR9) by CpG oligodeoxynucleotides (CpG) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. Because TLR9 is located intracellularly, we hypothesized that methods that enhance its internalization may also potentiate its immunostimulatory response. The goal of this study was to evaluate car...
متن کاملCancer Therapy: Preclinical Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity
Purpose: Stimulation of toll-like receptor-9 (TLR9) by CpG oligodeoxynucleotides (CpG) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. Because TLR9 is located intracellularly, we hypothesized that methods that enhance its internalization may also potentiate its immunostimulatory response. The goal of this study was to evaluate ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2011